
Gled – an Implementation of a Hierarchic Server–Client Model

Matevž Tadel∗

November 17, 2003

Abstract

Gled is an implementation of a hierarchic server–client model written in C++, having an
outside form of an object oriented framework. Master server exposes its object space to its
first-level clients which in turn provide mirroring facilities to second-level clients and also export
their own object spaces. Each client therefore plays a role of a client, a proxy and a server.
Infrastructure for propagation and broadcasting of method invocation requests is provided and
is general enough to allow for an efficient access control. Synchronization of object spaces
is achieved via streaming of object graphs and a time-ordered delivery of method invocation
requests. Objects can acquire their own threads to perform different tasks such as computation,
data acquisition & analysis or dynamic visualization. The obtained results can be pushed to
other computing nodes or storage devices. As threads are spawned and controlled by standard
method invocation requests, schedulers & job control mechanisms spawning across a whole Gled
cluster can easily be implemented. On viewer level, Gled features automatically generated GUI
widgets and a sophisticated 3D rendering infrastructure.

1 Introduction

The basic ideas of Gled are stemming from recent developments in high energy physics (HEP) com-
puting as well as from modern information technologies (web & grid) and concepts of cyberspace
(interactive computer graphics, virtual reality, multi-user online games). During the last ten years
the paradigm of object oriented programming was making its way into HEP, both by migration
of experiments from fortran to C++ and appearance of ROOT data analysis framework [1]. The
methodology of a typical physical analysis didn’t change much though: it still consists of preparing
the input, running the batch job(s) and post-processing & visualization of output. While ROOT
simplifies transfer of data from batch job processing to analysis framework, the problem of unifi-
cation of all the stages of analysis remains only partially addressed and requires, for its efficient
solution, high computing skills on the part of a user. This is not a serious problem for a large,
mature analysis which takes several days to complete but in early stages of analysis preparation
users typically run many small jobs and thus aspire for a fast response of computing infrastructure
with the least possible involvement in technicalities.

With the appearance of relatively cheap super-computers in form of computing clusters and
powerful desktop computers the time spent maintaining the working environment is contrasted out
far more than ever before. Large computing farms with modern schedulers can easily handle jobs
with minimal time requirements to provide an unhindered analysis & algorithm prototyping while
desktop computers can store data in an order of ∼100Mb (as well as obtain it via its network

∗Matevz.Tadel@ijs.si

1



Gled – an Implementation of a Hierarchic Server–Client Model 2

connection) and provide enough computing power for its processing and visualization. One of
the basic aims of the Gled project is to address these new possibilities and integrate algorithm
development, input preparation, job execution, data visualization and user-to-user communication
in a common environment.

Another element of modern computing that has likewise grown is the size of datasets and
databases being processed, thus putting a heavy load on all data transport layers, from networks
to permanent storage devices. For WAN-s and inter-cluster communication the problem has been
effectively addressed with the introduction of grid technologies, while LAN-s within large com-
puting clusters with centralized storage systems are still posing a challenge as many improvements
minimizing the data transfers can be envisioned. A hierarchic structure of computing nodes inter-
woven with data storage and communication nodes seems an obvious solution and it provided one
of the models for hierarchic server–client structure of Gled. By virtue of the hierarchic structure,
the inner computing nodes do not need a direct WAN access. This architecture might also be of
prime interest for distributed multi-user interactive environments where hierarchic structure allows
for balancing of WAN traffic and local CPU usage.

1.1 The main design features of Gled

The Gled project aims at building of an object oriented framework/toolkit by extending the notion
of a C++ class. It provides the following extensions to the C++ class paradigm:

1. Serialization of objects. ROOT’s infrastructure for serialization of objects provides a firm
base for storage of objects and their transmission over the network.

2. Serialization of method calls allows for a transparent implementation of remote method
calls with objects acting as the natural elements that generate/process the requests.

3. Flexible authorization mechanism built upon execution environment for serialized method
calls.

4. Automatic generation of GUI classes. The auto-generated widgets always send serialized
method calls to the central message processing unit and are therefore decoupled from the
actual objects they are representing. The GUI classes are a convenient way for viewing and
editing of objects.

5. Rendering classes coupled with Gled’s rendering infrastructure provide an alternative
representation of objects. It can be used to build advanced visualization systems or as a
flexible method for representing and interacting with large object collections.

Furthermore, Gled has a low-level support for object aggregation (lists and smart pointers)
allowing an easy construction of arbitrarily complex object structures (graphs). The object graphs
can be shared across a cluster with the hierarchic server-client paradigm assuring a consistent object
state and proper method call propagation.

From architectural point of view Gled is designed as a modular application with a minimal
kernel, providing base classes and hierarchic server-client code. User classes/code can be imported
into a running kernel by dynamic loading of appropriate shared libraries.



Gled – an Implementation of a Hierarchic Server–Client Model 3

1.2 Development goals

The development of the Gled framework focuses on elements that allow for fast prototyping and
implementation of:

• class libraries for scientific computation and visualization,

• distributed applications for scientific computing and collaborative object-space access /
management,

• intra/inter cluster communication and data-transport & addressing protocols and

• advanced visualization systems for single and multi-user applications.

Object & method call serialization, hierarchic server-client architecture and GUI & data pre-
sentation elements of Gled also make it an interesting platform for projects seeking voluntarily
contributed CPU power for CPU intensive distributed computations (e.g. SETI@Home [2] and
Folding@Home [3]). The wide availability of broadband network access for home PCs is turn-
ing them into powerful computational and data analysis engines, suitable also for tasks with high
demands on network throughput. The hierarchic server-client model can be effectively used to
minimize the network traffic, provided that the topology of a cluster matches that of a network.

While the main development goal of Gled is to provide a generic platform for scientific com-
puting and prototyping of grid protocols, many of its features might be of interest to a wider
public. In particular, we see two possibilities for extending Gled in this direction.

1. Data-base interfaces coupled with GUI and rendering support of Gled would allow for an
easy implementation of advanced information systems.

2. The hierarchic server-client model, object & method serialization and rendering capabili-
ties make Gled an excellent platform for implementation of virtual reality systems. In the
extreme case Gled could even be used as a multi-player game engine.

Both of these extensions would further enhance Gled for its main purposes. It is our intention to
attract open-source developers from external communities. Their contribution and wider interest
for the project would also allow for an efficient dissemination of grid technologies to a wider public.

2 Overview and Terminology

The basic elements of Gled are objects, specializations of a class ZGlass, exported into a hierarchic
server–client system. The common base class provides services for communication with the Gled
system and, together with the Project7 code-glue generator, enables its instances to be serialized
in a context of an object graph as well as to send and execute method invocation requests (MIR).
Compared to RPC [4], MIRs in Gled represent a distributed RPC implementation of a “call/no-
wait” variety with internal rules that allow for propagation of MIRs through the hierarchy of a
Gled cluster.1 ROOT’s streaming mechanism guarantees interoperability of architectures and in
this context corresponds to external data representation standard (XDR [5]) of RPC.

Gled objects are memory-resident and optimised for fast modification and immediate replica-
tion. Nodes in a Gled cluster share data and collectively modify it. If a given node desires access

1Gled also supports synchronous remote method invocation with datagram of arbitrary length as the return type.



Gled – an Implementation of a Hierarchic Server–Client Model 4

Figure 1: Comparison of standard (left) and hierarchic (right) server–client model. Circles represent
computer nodes, while labels S and C stand for server and client respectively.

to some data it has to mirror it first and after that it receives and sends MIRs to keep the data
in synchronization with the server. This is quite unlike LDAP [6] which is optimised for massive
concurrent queries with slow modification and lazy replication. On the other hand, Gled objects
can be imported from databases, either as static data, as query results or as dynamic data that
can be changed and possibly reinserted into the database.

To be able to explain the details of functioning and habitat of Gled objects, an overview of the
hierarchic server–client architecture and basic properties of the Gled system will first be made.

2.1 Towards a Hierarchic Server–Client Model

The basic idea of a hierarchic server-client model lies in extension of a simple server–client commu-
nication graph to a more general tree structure (Fig. 1). The most notable difference, beyond the
appearance of multiple levels, is that each client becomes also a server for its clients and a proxy in
respect to its server (as well as for all higher servers on the way to the master server). Separation
of server spaces of clients belonging to one server is in fact the feature that makes the hierarchical
model interesting: it allows nodes to share data selectively, making it visible only to the nodes that
need access to it. The topology of a tree is arbitrary and can change dynamically. In practice it is
dictated by the structure of the problem being addressed and should provide optimal functioning
of the nodes while minimizing data transfers among different levels of the cluster hierarchy.

Another point to notice from the above figure is that a master server and pure-client nodes are
just degenerate cases of the general node behaviour. This presents a drastic departure from the
standard server-client model. To emphasize this difference and to avoid confusion, the term Saturn
was chosen to signify an operational node in a Gled cluster. The naming is based on the analogy
with planetary system and propagation of light: light emitted by the planet Saturn is partially the
reflected light from the Sun and the rest is produced by the processes proceeding under the veil of
the planet’s atmosphere. The master server is called either a zeroth-level Saturn or Sun Absolute.
Additionally, symbol S is used for any Saturn, S0 for the Sun Absolute and Si, i > 0 for an i-th
level Saturn.

Since objects need to be uniquely identified across different nodes, they are numbered with
positive integers spawning an object ID space. Intervals from the available set are claimed by
Saturns in succession as they get attached into the system. Fig. 2 shows an example of object space
partitioning for a chain of three Saturns. The linear partitioning with pre-reservation of desired
ID-space interval minimizes efforts associated with routing of MIRs without the loss of generality.

Objects in the server space (or sun-space) of S0 can be seen on all Gled nodes. MIRs directed



Gled – an Implementation of a Hierarchic Server–Client Model 5

Figure 2: A scheme of object ID space partitioning. For each Saturn the sun symbol represents its
server space, the moon symbol its proxy-client space and the fire symbol shows the local space of
the Saturn.

at them from lower Saturns (or moons) are always routed up to S0 where the requests are checked
and, if they are accepted, executed and broadcasted to S1 Saturns. They in turn execute the
MIR and broadcast it further down the hierarchy. For a Si Saturn, the object spaces of all higher
Saturns are effectively merged into a common ID-space partition, called its moon-space, providing
the proxy service. This furthers the light analogy: the light emitted by a Saturn on behalf of its
higher Saturns is the reflected light, just as we see the Moon in the reflected light of our Sun. A
Saturn has no executive power over its moon-space although operations (threads) issuing from it
can perform tasks on behalf of other Saturns.

The same holds for each Saturn: it is the master of its sun-space and all MIRs affecting it must
pass through its execution control prior to their execution and broadcasting.

Sun-space of each Saturn is further subdivided to allow for its partial exposure to lower Saturns.
Migration of objects between different object-spaces is also possible. This features are discussed in
section 4.

Another important feature of such partitioning is the natural arising of a local object space (or
fire-space) on each Saturn (Fig. 2). It contains objects pertaining to local computation and viewing.
Fire-space extends over the object-space following the Saturn’s reserved sun-space. As the names
suggest, objects belonging to fire-space are entirely local (light emitted by a simple fire can not
reach other planets). Since global and local objects share the same ID-space, local objects can
easily reference the global ones to modify their own behaviour. Also, a user is provided with the
same interface in both cases.

2.2 The Main Aspects of Gled

Gled is built upon ROOT [1] and thus inherits its versatile I/O infrastructure (access of local and
remote files with inner directory structure) and a rich set of data storage, analysis and presentation
functions. CINT [7], a C/C++ interpreter, is also a part of ROOT’s heritage and presently plays
the role of a scripting language.2

As mentioned before, Gled-enabled classes stem from the common base ZGlass. Following the
analogy with light any Gled class can be referred to as a glass (material, not a vessel) and any
instance as a lens. Infrastructure enabling lenses to be fully operational is rather elaborate and

2Currently CINT is not thread safe and therefore limits Gled’s performance to a single scripting environment per
Saturn. Usage of a loosely coupled scripting language (e.g. perl6) would allow several concurrent scripting sessions.



Gled – an Implementation of a Hierarchic Server–Client Model 6

could as such pose a heavy load on a programmer. To bypass this obstacle, definitions of glasses
are preprocessed by two parsers/code generators:

• ROOTCINT (part of the ROOT system) produces a dictionary, serialization method and
interpreter bindings;

• Project7 (part of Gled) generates accessor methods, methods for streaming and processing
of MIRs, connectivity introspection methods as well as GUI components for a given glass.

Both produce code that is in part included back into the class definition. Therefore some of the
class semantics is implicit in data and function member declarations.

MIRs are always enclosed in a context, specifying the target lens, the identity of a caller and
all lens-type arguments. This allows for authorization and dependency checking prior to complete
unfolding of the request and provides a transparent way for creation of requests originating from a
GUI.

To simplify the extension of the Gled system, build process and component deployment, glasses
and their supporting structures are grouped into library sets which are dynamically loaded into a
running system.

Viewing part of a library set is separated from its main part, following the general rule that the
objects themselves should not know how and when they are being observed. Each Saturn can accept
local viewers, or Eyes. They can be individually authenticated to allow different access privileges.
Eyes instantiate lens-views, provide MIR sending facility, receive change notification messages and
distribute them to targeted viewing fragments. Viewing classes have a read-only access to glass
data and send MIRs to their Saturn to actualize the desired changes or to initiate actions.

3 The Data Model

In Gled the basic data element is an object of class derived from the common base class ZGlass, i.e.
a lens. In any OO framework the functionality of a base class determines its programming paradigm:
it imposes certain structure on programs by providing a means for static data structuring and
models of algorithm invocation. In dynamic systems data can influence functioning of algorithms
and algorithms can change data as well as its structuring, therefore making a distinct separation
impossible in certain cases. Gled is rather permissive in this respect and does not enforce strict
control over object access and method execution. Rather it provides infrastructure for object
locking (each lens can be individually locked), setting & accessing of data and MIR processing and
execution. This mechanisms must be used by the programmer to insure object graph consistency.

3.1 Data Members and Lens Aggregation Methods

The basic model for a glass is that of one automaton in a multi-cellular state-machine with dynamic
topology. Data members of a glass represent its internal state. If they are declared as exported they
are synchronized among Gled nodes that share an instance of this class. Non-exported members
hold data that is local to each Saturn and they are not included in the data-stream created during
object serialization. They can also serve for data that can be computed locally or as a storage for
intermediate results and structures needed for visualization.

Data members can either be of simple types or they have to be descendants of ROOT’s base
class TObject which provides streaming facilities.3 Data members that can be explicitly set by value

3ROOT provides a rich set of classes for data storage, among others also matrix and vector classes. Creation of
custom classes is trivial and is supported by the Gled build process.



Gled – an Implementation of a Hierarchic Server–Client Model 7

must provide the interface in a form of an appropriate set method. Unless those methods have
additional side effects they can be generated automatically by the Project7 generator. Further,
set methods must also be available in their streamed versions so that the elementary changes can
propagate across the hierarchy of Saturns. They can always be generated automatically as they
only produce a MIR containing the streamed value for the data member in question. This way
the problem of setting the values of data members is directly mapped on the problem of method
execution. Execution and propagation of MIRs is the subject of next subsection.

A special treatment is provided, on all levels of Gled, for an exported pointer to a glass, called
a link. Links are the first option for aggregation of glasses and they extend a notion of object state
into the realm of topological connectivity.

The second aggregation method is provided by a glass ZList. A list does not own its elements, it
simply references existing lenses. The list interface is suitable for organization of ordered collections
with frequent additions and removals of elements. It is flexible enough and can easily be extended
over the same basic interface.4

Using both aggregation methods arbitrarily complex object graphs can be constructed. Also,
these graphs need to be synchronized over the Gled cluster, often in a form of sub-graphs connected
to an already existing object system. Therefore a versatile interface is provided for marking of sub-
graphs, their streaming and rebuilding. Structures encapsulating a sub-graph are called comets
to be reminiscent of celestial objects that traverse a planetary system or even leave it altogether.
Comets can be stored into files or sent to another Gled node for implantation in one of its object
spaces. Advanced deep-copying can also be achieved using the comet mechanism.

The base class includes reference counting facilities, mandatory for streaming and manage-
ment of multiply connected graphs. Methods for modification of links and lists take care of that
automatically.

3.2 Data Manipulation & Method Execution

A fair number of methods of any class usually provides a means for changing the static data (either
in an object itself or in an object that is accessible from it). In Gled, special care must be paid to
methods that change the exported data of a glass. Such methods must be executed on all Saturns
holding a copy of the lens in question in order to retain consistency of object-spaces. This effectively
means that the method call needs to be serialized and delivered to all nodes that must execute it.

Serialization operators for basic types are provided by ROOT and streamers for user-defined
classes (as well as for glasses) are automatically generated by ROOTCINT. Project7, in turn,
generates wrappers for creation and execution of MIRs. Its operation is guided by instructions
encapsulated in comments following the declarations of methods. This provides a natural extension
of C++ semantics without affecting its syntax. ROOT in itself already uses such comments for control
of streaming.

3.2.1 Set methods

The set methods for exported glass members fall directly into this category. To minimize the
amount of typed code these methods as well as methods for generation of their MIR-producing
counterparts can be generated automatically. Examples of instructions for Project7 parser are
shown in Fig. 3, top part. E.g. a name of a lens is stored in a member mName and the Xport{GS}
declaration (Xport∼ eXport) in the comment field following it induces the generation of methods

4Implementation of ZList is based on STL list container and can be used with STL algorithms.



Gled – an Implementation of a Hierarchic Server–Client Model 8

class ZGlass : public TObject {

...

TString mName; // Xport{GS} 7 Textor()

TString mTitle; // Xport{GS} 7 Textor()

Bool_t bActive; // Xport{GS} 7 BoolOut()

Short_t mRefCount; //! Xport{G} 7 ValOut(-width=>4)

...

};

class ZList : public ZGlass {

...

virtual void Add(ZGlass* g); // Xport{E} Ctx{1}

virtual void AddBefore(ZGlass* g, ZGlass* before); // Xport{E} Ctx{2}

};

class ZNode : public ZList {

...

ZNode* mParent; // Xport{GS} Link{} Structural parent

...

Int_t MoveLF(Int_t axis, Real_t amount); // Xport{E}

...

};

Figure 3: Code snippets from Gled base classes. C++ comments following the declarations contain
instructions for further handling by the Gled system. The //! syntax prevents streaming of that
member and thus declares it un-exported (this syntax is inherited from ROOT). Comments of the
form Instruction{args} are instructions for the Project7 parser/code generator and fully specify
which methods will be auto generated for the data member. Constructs following 7 in comments
fields are constructors for perl classes that generate code for GUI widgets.

GetName(), SetName() and MIR-producing S SetName(). Links as rather special members have to be
declared as such (e.g. Link{} for member ZNode::mParent). The generated code is shown in Fig. 4.

3.2.2 Ordinary methods

For other methods only their MIR counterpart needs to be generated (declaration Xport{E}; E∼Exec).
MIRs contain a method context intended to hold glass-type arguments for the call. A good exam-
ple of methods that use this facility are list modification methods (e.g. Fig. 3: ZList). Declaration
Ctx{n} instructs Project7 to store the first n arguments into the context part of the MIR while
retaining the same function call signature.

3.2.3 MIRs and their Routing

A MIR is a data buffer containing the following elements:

1. identification of the caller (Saturn or Eye)

2. identification of the recipient Saturn (optional)

3. identification of the Saturn that expects the result (optional)

4. context of the call (all lens arguments) and identification of the method to be executed
followed by its arguments

5. custom data (optional)



Gled – an Implementation of a Hierarchic Server–Client Model 9

A MIR contains all the information needed to execute the method and can be created at any point
in the code that has access to the lens. Then the MIR must be passed to the local Saturn (either via
a socket, as is done by Eyes, or directly from the calling thread). Each Saturn provides sophisticated
routing services and an execution enviroment to assure that MIRs are properly processed (routed
and executed) by the Saturn hierarchy.

There are two types of MIRs, handled differently by the Saturn’s routing code and serving
different purposes.

1. Flares cause a synchronized change of a lens on all Saturns possessing it. Imagine a lens in
a sun-space of Saturn Si. Flares targeted at the lens must originate from Si or from any of
its moons. If a flare originates from a moon it is first routed, level by level, up to the Si,
where the checking of the MIR is performed and, if checking yielded no exceptions, the MIR is
executed. Then the MIR is passed to Si+1 Saturns. The Si+1 Saturns, upon receiving a flare
from above, pass it on to Si+2 Saturns and execute it themselves with no further checking:
the context check is only done on the top Saturn. Flares are shot into the system and then
their light is scattered among the Saturns.

2. Beams invoke a method in a lens on a single Saturn (specified as the recipient of the MIR
(element 2.)). The MIR is not broadcasted to lower Saturns. A beam is routed via a common
parent of the sender and the recipient. At the destination the checks are performed and the
MIR is executed. Methods invoked by beams often start a new thread or serve as a source
of new beams or flares. Beams cut through the Saturn structure without effecting any other
hierarchy node than the receiver.

The type of MIR can be set after a MIR has been created so a common interface can be used for
production of both kinds of MIRs.

If the result expecting Saturn is set for a MIR (element 3.) than the calling thread is suspended
until the MIR has been processed or an error message is returned. For beams the returned result
can contain a datagram of arbitrary length and hence beams can be used to send complex queries
to any Saturn in the cluster.

3.2.4 Execution

Execution of a MIR proceeds on three levels:

1. first the appropriate library set handler is selected and a lens is locked for the execution,

2. the library set handler (auto-generated) determines the class that will provide the actual
execution method,

3. the E Exec method (auto-generated, e.g. Fig. 4) of a glass determines the method, de-serializes
the arguments and makes the actual method call.

During the method execution a lens has access to MIR data, including the message buffer. This
information can be used to determine the type of MIR that invoked the call. Further, the message
can be followed by any amount of custom data which is thus made available to the lens-method
processing the MIR.



Gled – an Implementation of a Hierarchic Server–Client Model 10

3.2.5 Updating of lens-views

At this point it is appropriate to explain the functioning of a view-update mechanism. Its cycle is
initiated from a lens itself by calling its stamping method (e.g. Fig. 4, in method ZGlass::SetName()).
This in turn instructs Saturn to notify its Eyes that the object has changed. Each Eye then per-
forms an update of corresponding views.5 Viewer updates are, as demonstrated, largely arbitrary.
Further, they can be blocked for any lens or a group of lenses belonging to a common chunk of
object-space. The auto-generated set methods adhere to stamping and relieve the programmer of
this duty.

Fig. 5 shows a schematic representation of a flare execution on a Saturn.

3.3 MIR Processing Performance Measurements

To benchmark the performance of the MIR processing mechanisms several simple tests have been
performed. The goal was to determine the performance of the infrastructure itself and none of the
tests does anything useful: they simply invoke the relevant mechanisms of Gled.

The benchmarking code was implemented within the Gled framework itself. The tests used
thread execution environment of Gled (described in more detail in Sec. 6) The execution perfor-
mance of an empty thread loop is shown in “Thread Loops” column of Tab. 1.

Methods invoked in a context of a Saturn can optionally emit viewer update requests or stamps
(see Sec. 3.2.5). As stamping presents an execution penalty (serialization of the stamp, broadcasting
to viewers and processing of the stamp by viewers) the two modes have been tested separately. In
Tab. 1 they are represented by column groups (a) “Method call” (thread calls an empty method
in a lens) and (b) “Method call & Stamp” (the method also performs stamping). Furthermore, as
streaming and emitting of the stamp does not occur unless viewers are connected to a Saturn, we
have made two sets of measurements on each machine: one with pure server and another with a
single connected viewer. For pure servers there is a minimal performance penalty associated with
stamping. In case (b) it is interesting to note the performance benefits of a two-processor machine
where server and viewer threads can run in parallel.

For both methods types three different modes of method invocation have been tested:

1. Direct: A direct method call. For empty method calls the cost is equvalent to the cost of
a function call, while for methods with stamping the stamping procedure is also performed
(note the drastic performance drop when a viewer is connected). These measurements also
represent reference values for MIR-based invocation schemes described below.

2. MIR: MIR is created within the main thread and posted directly to the Saturn for processing
and execution. All MIR processing proceeds within the same thread.

3. Beamed MIR: MIR is created on a client machine and sent to the server in beam mode.
Saturn’s thread listening to client sockets receives the MIR, unpacks it and processes it as in
the above case.

It is important to note that the limiting factor was the processing speed of the server and not
the available network bandwidth.

The presented results show the execution penalties for different elements of the Gled infras-
tructure. It is interesting to observe that the measured performance spawns over one order of

5Presently the update is sub-optimal in a sense that all members of a lens declared in a given class are refreshed.
There are special notifications for link and list changes as well as the possibility of user-specified notifications.



Gled – an Implementation of a Hierarchic Server–Client Model 11

// Get/Set methods for ZGlass::mName

const Text_t* ZGlass::mGetName() const {

const Text_t* _ret = mName.Data(); return _ret;

}

void ZGlass::SetName(const Text_t* s) {

mExecMutex.Lock();

mName = s;

Stamp(LibID(), ClassID());

mExecMutex.Unlock();

}

// Method to create MIR for calling ZGlass::SetName()

ZMIR* ZGlass::S_SetName(const Text_t* s) {

ZMIR* _mir = new ZMIR(mSaturnID);

_mir->SetLCM_Ids(1, 1, 1);

_mir->WriteArray(s, s ? strlen(s)+1 : 0);

return _mir;

}

// and its execution part.

void ZGlass::ExecuteMir(ZMIR& mir) {

switch(mir.Mid) {

...

case 2: {

Text_t* s_raw=0; mir.ReadArray(s_raw); auto_ptr<Text_t> s(s_raw);

SetTitle(s.get());

break;

}

...

}

// Method to create a MIR for calling ZList::AddBefore()

ZMIR* ZList::S_AddBefore(ZGlass* g, ZGlass* before) {

ZMIR* _mir = new ZMIR(mSaturnID, (g ? g->GetSaturnID() : 0), (before ? before->GetSaturnID() : 0));

_mir->SetLCM_Ids(1, 2, 258);

return _mir;

}

// and its execution part.

void ZList::ExecuteMir(ZMIR& mir) {

static string _eh("ZList::ExecuteMir ");

static string _bad_ctx("ctx argument of wrong type");

switch(mir.Mid) {

...

case 258: {

ZGlass* g = dynamic_cast<ZGlass*>(mMir->Beta);

if(g == 0 && mMir->Beta != 0)

throw(_eh + "[AddBefore] " + _bad_ctx + ":g [Beta]");

ZGlass* before = dynamic_cast<ZGlass*>(mMir->Gamma);

if(before == 0 && mMir->Gamma != 0)

throw(_eh + "[AddBefore] " + _bad_ctx + ":before [Gamma]");

AddBefore(g, before);

break;

}

...

}

Figure 4: Snippets of code produced by the Project7 code generator.



Gled – an Implementation of a Hierarchic Server–Client Model 12

Figure 5: Execution of a flare on a Saturn. In case of a beam the broadcasting of MIR is not
performed.

Machine
Thread Method call Method call & Stamp
Loops Direct MIR Beam Direct MIR Beam

AMD-2600 Dual 245.6± 1.4 244.9± 1.2 78.6± 0.4 54.6± 0.3 234.5± 1.3 75.1± 0.5 52.9± 0.3

as above + viewer 243.0± 1.3 242.6± 0.8 79.2± 0.4 51.4± 0.5 87.6± 0.3 28.4± 0.3 22.4± 0.2

AMD -2600 Single 237.9± 0.5 237.3± 0.6 76.4± 0.2 53.1± 0.1 226.8± 0.4 72.8± 0.1 51.4± 0.4

as above + viewer 235.1± 2.1 234.6± 1.2 78.2± 1.6 47.3± 0.3 64.4± 0.1 21.8± 1.1 17.9± 0.1

P3 -1000 Dual 123.8± 0.3 123.0± 0.3 35.8± 0.1 27.2± 0.1 111.6± 0.4 34.6± 0.1 26.6± 0.1

as above + viewer 123.9± 0.2 123.2± 0.2 35.6± 0.1 26.4± 0.0 54.5± 0.4 18.1± 0.2 15.0± 0.2

Table 1: Results of execution performance measurements for different machine configurations ex-
pressed in thousands of executions per second. AMD stands for AMD Athlon and P3 for Pentium
III processor. See Sec. 3.3.

magnitude. In real-life uses of Gled the very basic mechanisms would be used for data transport
and only a few specialized objects would emit viewer update requests. By allowing a programmer
to use an arbitrary combination of framework elements, Gled can serve to implement a wide range
of advanced RPC techniques with optional continuous updating of connected viewers. But as we
have demonstrated that comes at a cost.

4 Management of Saturn’s Object-Spaces

A sun-space and a fire-space of each Saturn are both managed (or ruled) by its king lens. A
king has purely administrative duties: it holds its reserved object-space and delegates queens to
actually rule upon their entrusted ID-space chunks (queen-spaces). Queens can be serialized to, or
resurrected from, comets (see Sec. 3.1) and they are the smallest object-space elements that can be
mirrored by lower Saturns.

Upon connection, a new Saturn only receives serialized kings and queens without the actual
contents of their object spaces. The mirroring of each queen-space is performed separately and can
be dynamically controlled. Request for mirroring of a queen on a given Saturn (this request is also
a MIR) can originate from any of the Saturns that know about the existence of a given queen. A
queen can be marked as mandatory : in this case all new Saturns are requested to pull it into its
moon-space.

A queen can depend on other queens in the same sun-space or in the moon-space of a given
Saturn. When a queen Q depends on a queen Q′, subjects of Q can reference subjects of Q′ by



Gled – an Implementation of a Hierarchic Server–Client Model 13

either aggregation method (link to them or hold them as list members). This means that Q′ must
be mirrored by a Saturn prior to mirroring of Q. Otherwise the reconstruction of Q’s queen-space
would result in unresolved references.

Further, queens provide lens instantiation facilities: a lens can be created and attached into the
existing lens-graph by sending the queen a single MIR. Lenses can be created as default objects
(by sending library set and class IDs of desired glass) or from an existing serialized lens.

Another very important role of queens is blessing of MIRs directed at their subjects. A Sat-
urn does rudimentary context checking to provide error trapping, while queens perform extensive
dependency and access control. The basic queen implementation of the MIR blessing checks that:

1. all context arguments belong to the queen or to its dependencies. As all arguments of link
and list modifications enter into the context part of a MIR, the consistency of object-spaces
with respect to dependencies is guaranteed.

2. the emitter of the MIR is authorized to execute it. Gled offers a complete set of MIR filters
which can be used to construct complex access restriction / permission system.

By sub-classing the ZQueen class, a programmer gains a complete control over instantiation of lenses,
their propagation and their access control.

Kings and queens are lenses and they are placed in the first available address of the ID object-
space they are ruling. Each ruler also manages itself and can be accessed using the standard Gled
mechanisms (MIRs, GUI control).

Queens can migrate to other kings, either to higher or lower levels in Saturn hierarchy. This is
facilitated by the ability of queens to create comets. Saving them to disk, for permanent storage
or swapping purposes, is thus also possible.

Queen Types: Ordinary queens are created with no subjects and later instantiate them into
their queen-spaces. When a lower level Saturn requests mirroring of a queen-space, it has to be
serialized and sent to the moon. This is reasonable for dynamic data that is constantly changing.
But often one needs a static library of lenses that can be referenced from other dependent queens.
One such service is provided by the IceQueen class. Ice queens are instantiated from a comet and
block all incoming MIRs. Lower Saturns can instantiate them in the same manner, by loading the
comets from a permanent media, thus saving the network bandwidth. Another option, semi-statical
in nature, is given by the FileQueen class. File queens are spawned over a ROOT file and provide
a mapping from a full pathname to a lens identifier. When sending such queens to a moon it is
enough to stream this mapping and the moon can instantiate the objects from the local storage
devices. A similar concept could be used for connecting Gled’s object-spaces to a database system.

5 Representation and Management of a Gled Cluster

A Gled cluster is composed of Saturns organized in a tree structure. Inside Gled each Saturn is
represented by a lens of glass SaturnInfo. It provides the network identity of a given node and is
also the natural place to store access privileges and other static or dynamic properties of a node.6

Further, SaturnInfo has three links: one to its master Saturn (for SunAbsolute this is link is null)
and two to lists holding its direct client Saturns and connected Eyes (viewers). Representants of all
Saturns are instantiated and maintained under a special queen, called the sun-queen. It is the first
queen of the sun-king of Sun Absolute and is pushed down to all connecting Saturns. This means

6E.g. node architecture, amount of RAM, CPU speed, load averages and other monitoring data. Fig. 6 shows all
GUI enabled data members of the SaturnInfo glass.



Gled – an Implementation of a Hierarchic Server–Client Model 14

that each node in a Gled cluster is always aware of the whole cluster structure. Furthermore, this
structure is rooted in the object-space itself and directly accessible using the standard mechanisms
of the Gled paradigm.

A Saturn can accept connections from any number of Eyes. They also have a corresponding
EyeInfo structure allowing each viewer to have its own access privileges. Various messages can be
sent directly to an Eye, thus providing an efficient way for delivery of messages, warnings and errors
resulting from execution of MIRs originating from the Eye in question.

The SaturnInfo and EyeInfo are both sub-glasses of the ZMIREmittingEntity glass. A MIR
emitting entity (MEE) possesses links to its primary identity (a representation of a user) and to a
list of its active group identities (representations of groups or virtual organizations). As every MIR
that enters the Saturn hierarchy holds the lens ID of the MEE that emitted it, the authorization
procedure can query the identities associated with the MEE and act accordingly.

Structure of a Gled cluster is therefore exported to all Saturns but is managed centrally at
the Sun Absolute. Any lens can get information about any Saturn or Eye in the cluster and send
it requests or messages. A direct bridge can be opened between any two Saturns to allow for
node-to-node data transmissions.

The SaturnInfo structure also holds unique identifications of both sun-king and fire-king of its
Saturn. By combining these IDs with MIRs directed at the Saturn in question, kings can create
queens in their object-spaces on request from any Saturn in the cluster (although the requesting
Saturn might not be able to see this queen). These queens can then perform some computation on
behalf of the caller, either locally or by spreading it further down to lower level Saturns.

In a similar manner connections between several Gled clusters could be implemented.

6 Operators & Threads

Each Saturn can run many threads simultaneously. A glass that needs to acquire its own thread
for a certain task or computation must be sub-classed from the Eventor glass. The common base
provides mechanisms for thread control and identification. Each Eventor contains a directory-like
structure of Operators (also glasses) representing the actual algorithmic elements of a thread. The
operators can be traversed once or several times until some exit condition is met. All thread
operations are therefore encapsulated in the framework and can be controlled with MIRs as well
as from Gled GUI.

Execution of and descending into individual operators can be controlled at run-time, so the
operator graph traversal is determined by the state of its elements. Thread methods are exception
throwing to provide error recovery and thread state management facilities.

When a thread is created, its owner becomes the sender of the MIR that triggered thread’s
execution. This is rather important as threads can create MIRs and post them directly into a
Saturn’s routing system. By accessing this information the Saturn can determine the owner of the
thread and set the caller ID of MIR accordingly.

Any method can be called from a thread (there is no built-in restriction mechanism) and it is
rather easy to spoil the consistency of object-spaces by direct modification of lenses when a MIR
should have been used. Also, locks must be used when accessing data of lenses which are not
guaranteed to remain constant. Threads are no toys: they are high-speed execution agents that
would, if limited in their execution power, hinder the computational performance of Gled.

Threads can be used to perform computations, certain periodical tasks (such as monitoring of
the node activity) or can be input-driven if they perform I/O operations. They can also spawn



Gled – an Implementation of a Hierarchic Server–Client Model 15

new processes and act as their supervisors, faithfully representing their state and monitoring the
output.

7 Viewing & Rendering Infrastructure

GUI elements provided by an application framework/toolkit should be general enough to allow
implementation of a wide range of user interfaces. Gled GUI, as the rest of the system, is based
on the notion of extended C++ class: its main purpose is to allow users to manipulate object-data
and to invoke object-methods. This implies that the application front-end has to be representable
by a collection of classes that hold the relevant configuration data and implement the desired
functionality.7 As a default GUI is provided for all classes the prototype application GUI is readily
available.

The GUI architecture is modular and extensible. Each library set can, besides the auto-
generated widgets for glasses, define their own GUI elements. This, in principle, allows for con-
struction of custom, hand-made GUI front-ends and restricted user interfaces.

7.1 Standard GUI elements

Viewing objects are completely decoupled from the core of the Gled system. They are managed
by the Eye class which serves as a router between the local Saturn and actual viewing elements.
Towards the Saturn it transmits MIRs generated by lens-views in their GUI callback functions.
From Saturn it receives change notifications objects (or Rays) containing, among other things, the
lens identity and type of change that occurred (change of member data, links, list contents, etc.).
As each Eye holds a mapping from viewed lenses to list of their lens-views, it can efficiently update
all views of the changed lens. This also implies that each lens can have an arbitrary number of
GUI representations.

The base class for lens-views (A View) contains a minimal representation of the observed lens
and some abstract methods for handling of change notifications. Further base classes are provided
for representations of links and lists. Automatically generated widgets for lenses as well as the
hand-made GUI front-end are all built upon these base classes. As details of the implementation
are beyond the scope of this article, the emphasis will be put on features of the GUI (implemented
using the FLTK widget library [8]).

For each lens a window containing a collection of all automatically generated widgets for a
given lens can be created (e.g. Fig. 6). It includes widgets for all parent classes, ordered by the
class hierarchy.

An important feature of the Gled GUI is a generalized structure browser (lens-browser). It
displays lenses together with their list members and links. The list members are shown in a
collapsible vertical structure (as in most standard file/object browsers) while links are represented
in a horizontal structure, allowing more compact views of selected lenses (e.g. Fig. 7). The lens-
browser provides a means for manipulation of links, modification of list contents and instantiation
of new lenses. Lenses can also be exported into the C++ interpreter shell for manual operations.

The lens-browser has another mode in which its right part contains a custom set of widgets for
each lens (sub-selection of those from a full-lens-view). The desired glasses and their members can
be specified using a simple syntax. A specialized parser then creates the appropriate widgets for
each lens (Fig. 8). Such views provide an efficient way for viewing and editing of a large number of
lenses.

7In OO applications this is always the case, anyway.



Gled – an Implementation of a Hierarchic Server–Client Model 16

Figure 6: A full-lens-view for the SaturnInfo glass.

Figure 7: A lens browser displaying a lens graph. Each entry has two collapsing buttons: one for
links and the other for list members. Links of each lens are displayed on the right part of the
browser.

Figure 8: A set of custom-generated widgets inside a lens browser showing SaturnInfo structures
for a Gled cluster composed of five nodes.



Gled – an Implementation of a Hierarchic Server–Client Model 17

7.2 Rendering

The rendering infrastructure offers the representation of lenses and lens-graphs in 3D space. Actual
rendering of lenses is done by a parallel class structure that has to be coded manually for each
rendering device.8 It is not mandatory for glasses to have a corresponding rendering class: they
can use the renderer of any of their base classes. Rendering classes for each device and each library
set are produced as independent libraries and can be dynamically loaded into a running Gled
system.

A high level of flexibility is achieved by actual rendering of each lens being split into three
functions: PreDraw(), Draw() and PostDraw(). Further, rendering is proceeding on an arbitrary
number of levels allowing the draw methods of the lens, its links and list members to be called
in any order. This provides a versatile infrastructure for traversal of lens-graphs as well as for
management of renderer state (lighting, polygon mode, material properties, texturing, etc.).

More examples of Gled’s GUI and can be found at the project’s homepage [9].

8 Applications of the Gled system

We have presented the core functionality of the Gled system which, from this perspective, offers
an OO framework. However, if one is interested in building a distributed application, the base
classes of Gled can be seen as elements of a toolkit. Future work will, among other things, focus
on development of library sets (offering particular implementations for selected areas of interest)
and preparation of corresponding demonstration programs. Based on these, Gled will also become
a toolkit for respective development areas.

To conclude this paper the Gled system will be discussed from the point of view of four different
usage modes. This will serve to recapitulate the main ideas, to merge the presented details into a
coherent whole and to discuss future extensions of Gled.

8.1 Single machine, single user usage

Gled classes can serve as an interface to configuration and execution of user algorithms as well
as for visualization of resulting data. Persistency of configuration data and results of algorithms is
achieved by using ROOT’s object serialization and I/O infrastructure (ROOT files and trees).

Glass member functions can hold the implementation of the algorithms or can serve as a wrapper
layer for a specialized (numerical) library which can be implemented in any language linkable with
C++. By sub-classing the base thread glass (Eventor) finer control over operation and configuration
of algorithms can be achieved.

As GUI classes are automatically generated for all glasses, they can immediately serve for
composition of object graphs, for configuration and editing of member data and for algorithm
control via management of threads. CINT, the C/C++ interpreter, offers a general scripting interface
to all Gled’s functionality and thus complements the GUI functionality for complex and repetitive
tasks.

Standard data presentation services, such as histograms and graphs, are offered by the ROOT
system. Further, ROOT has a rich set of tools and algorithms for statistical analysis, minimization
and spectral analysis.

Dynamic real-time 3D visualization can easily be programmed by providing the rendering classes
and using the Eventor-thread infrastructure. As rendering crucially depends on the underlying

8OpenGL is used as the standard real-time renderer, others can be added using a common render-driver API.



Gled – an Implementation of a Hierarchic Server–Client Model 18

data-structures it is hard, if not impossible, to provide a generic and efficient set of rendering
atoms. However, for some specific cases the renderers are already available. E.g. a representation
of a 2D function on a rectangular mesh (using ROOT’s TMatrix class) and 3D triangulated surfaces
(wrapper over GTS library [10]). Further rendering elements will become available with appearance
of new library sets and with their proper structuring Gled will offer a generic multi-purpose
rendering toolkit.

8.2 Distributed and grid computing

The Gled framework enables prototyping and control of algorithms performing computation or
dynamic visualization within a hierarchic server-client-viewer model. As topology of the cluster
is not limited and can also change dynamically, sophisticated problem solving strategies can be
implemented over heterogenous clusters (MIRs and streamed data are architecture independent).

A particularly interesting feature of Gled is that the cluster structure itself is directly accessible
to algorithms using the standard framework mechanisms. On one hand this provides a means for
cluster monitoring and visualization while on the other it allows for dynamic optimization of the
cluster structure.

Currently there are no central mechanisms for node allocation and acquisition. Such mechanisms
will be implemented as daemons or network services with a top-level node manager. Another option
is to adopt grid resource allocation services when they become standardized. Until then standard
remote command execution mechanisms can be used (e.g. rsh or ssh).

Each node in a distributed cluster and each thread within a node analyses and/or produces
data. Based on the nature of the problem, different solutions for emitting the resulting data may
be applied.

• If the data is segmented into many relatively small fragments or is needed for continuation of
computation on some other node, then it can be sent encapsulated into a MIR. The object
that receives the MIR can properly place the data into a larger structure or further propagate
it to relevant algorithms. Arguments of the MIR can serve as instructions for management of
the subsequent data. This way MIRs can serve as carriers for a sophisticated data exchange
protocol.

• If the data is produced in large fragments and is not instantly needed for further computation
then it can be emitted via standard data-exchange mechanisms, e.g. ftp, rootd (remote
access to ROOT files) or distributed file-systems (nfs, afs). The data can also be cached in
the vicinity of the local node and transmitted on request upon completion of the computation
on a larger scale. This allows minimal network connection duration and provides means for
shaping of the network traffic.

Similar problems arise when algorithms need read access to shared data. Further development of
Gled will also address various data exchange mechanisms and will offer some concrete implemen-
tations of data traffic structuring and grid-aware data addressing protocols.

8.3 Multi-user information systems

Hierarchic structure of the Gled cluster makes it an interesting platform for implementation of
collaborative tools and VR systems. Intermediate proxy nodes can provide an effective reduction
of network traffic when several nodes from several organizations are connected into a common
information system.



Gled – an Implementation of a Hierarchic Server–Client Model 19

The concurrent access of several user requires an elaborate authentication & access control
mechanism. A general implementation of such infrastructure is available. Authorization is per-
formed during MIR processing stage (as a part of blessing of a MIR by a Queen). Each lens can
specify its own access policy but its ruling Queen can provide further access policies. The details of
authentication and authorization infrastructure of Gled are presented in [11]. For the time being
Gled uses internal user and group databases and in due time interfaces to appropriate LDAP and
grid services will be created.

As Gled offers a direct correspondence between lenses and their 3D representations, advanced
VR systems with immersive control over object graphs can be implemented. This requires further
work on UI infrastructure, which has to provide mechanisms for creation of complex object con-
texts with transparent access to available member functions and their arguments. However, the
infrastructure for emitting MIRs from UI and receiving update requests is implemented as a part
of the core system. The available GUI elements (full-lens-views, lens-browser and GL rendering
window) provide a general interface to mechanisms of the Gled system and offer an example of
complexity that can be achieved by indirect mapping of lenses to GUI structures.

8.4 Encapsulated network services

By encapsulating network services within a sub-class of the Eventor glass, threads from within the
Saturn can offer any kind of service to outside clients, for example:

• Provide information about local Saturn and local computing node (status, monitoring data,
catalog of locally available data and availability of other services).

• Export its object-spaces and local data to consumers by using any desired protocol. For
example, lens graphs and lens data could be exported via http protocol in html or xml format.

• Serve as entry point for computation or service instantiation requests. After a successful
authentication such request can result in creation of a thread that will provide the required
service.

• Serve as entry point for data coming from external sources, such as other processes or sensors
connected to the node.

In this respect Gled offers monitoring and replication facilities for such services as well as
infrastructure for following and reporting the usage patterns (ROOT trees, histograms and graphs).
It is also an advantage that multiple services can be spawned from within the same process: it allows
for easier load balancing between different services and allows implementation of advanced strategies
for resolving complex queries (e.g. grid resource allocation requests) or providing parallel file I/O
operations.

9 Conclusion

The Gled system brings together a colorful collection of modern computing techniques and binds
them within a fairly general implementation of a hierarchic server–client model. By merging cluster
creation and configuration tools, object-based RPC, threaded exectuion environment, automati-
cally generated GUI widgets and sophisticated 3D rendering infrastructure, Gled has been shown
to represent a useful OO framework/toolkit for development of a number of distinctly different
applications that can take advantage of distributed computing environment, object serialization,



Gled – an Implementation of a Hierarchic Server–Client Model 20

cooperative multi-user GUI and rich data presentation & visualization infrastructure. In Gled
these complex techniques are represented at a fairly abstract level but at the same time a low-level
interface is available to allow for further extensions and more specialized implementations.

We hope that Gled addresses the demands and possibilities of modern computing in a fashion
that is both interesting as a research project and usable as a concrete framework implementation.

Availability

The implementation of the described framework is publicly available [9]. While Gled is constantly
developing, its core functionality is stable and suitable for implementation of production systems.
As it is with any open-source project, the future development of Gled largely depends on interests
and contributions from users of outside communities.

Acknowledgments

I am infinitely indebted to my friend J. J. Javoršek for his support and enthusiasm for the Gled
project. Without his willingness to spend countless hours discussing the arising problems and ideas
Gled, most probably, would not exist at all.

Many thanks go to teams developing ROOT, perl, Fltk and GNU development tools for
excellent packages that make the burdens of software development bearable.

References

[1] R. Brun and F. Rademakers, ROOT – An Object Oriented Data Analysis Framework, Pro-
ceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A
389 (1997) 81-86. See also http://root.cern.ch/.

[2] SETI@home, The Search for Extraterrestrial Intelligence, http://setiathome.ssl.
berkeley.edu/.

[3] Folding@home, Distributed protein folding simulations, http://folding.stanford.edu/.

[4] A.D. Birrell and B.J. Nelson, Implementing Remote Procedure Calls, XEROX CSL-83-7, Oc-
tober 1983.

[5] R. Srinivasan, XDR: External Data Representation Standard, RFC 1832, Sun Microsystems,
Inc., August 1995.

[6] W. Yeong, T. Howes and S. Kille, Lightweight Directory Access Protocol, RFC 1777, Perfor-
mance Systems International, University of Michigan, ISODE Consortium, March 1995.

[7] M. Goto, C++ Interpreter - CINT, CQ publishing, ISBN4-789-3085-3 (Japanese).

[8] B. Spitzak, et al, FLTK – A Fast Light ToolKit, http://www.fltk.org/.

[9] The Gled project homepage: http://www.gled.org/.

[10] GTS – GNU Triangulated Surface Library, http://gts.sourceforge.net/.

[11] M. Tadel, Authentication & Authorization Infrastructure of Gled, http://www.gled.org/
docs/auth/.


