
Authentication & Authorization Infrastructure of Gled

Matevž Tadel

November 7, 2003

Abstract

This document describes implementation-level details of authentication and authorization
mechanisms of the Gled framework.

1 Introduction

The main function of the Gled system is to allow collaborative access to object collections dis-
tributed across a hierarchic structure of computing nodes. Each node can maintain its own object
collections and can export them to nodes on the next (lower) level of the hierarchy.

Upon receiving the mirroring request the higher node sends a data-stream to the new connecter
that allows construction of the mirror image on the client side. After the initial mirroring the
consistency of the object collection is maintained via time-ordered delivery of method invocation
requests (MIR). MIR is, in its essence, nothing but a message that can be unambiguously interpreted
in a context of an object graph and results in an invocation of a method (with well-defined arguments
and arbitrary data-stream attached at its end) in a given object.

All changes of the object graph and all state changes of individual objects are representable
by MIRs. A change can be algorithmic (the execution of the method results in a change of the
object state) or the method call can contain further data that will replace part of object’s data (e.g.
set methods). If the change is algorithmic, it can be performed at all nodes and thus a balancing
between network bandwidth usage and node CPU usage can be achieved.

Sources of MIRs are servers/proxies/clients (Saturns) running at computing nodes connected
into the hierarchy and viewers (Eyes) connected to the nodes. Saturns and Eyes are represented as
Gled objects in the object collection of the top-level server and therefore the cluster structure is
known to all nodes. Sender of each MIR can be identified by the Gled object that represents the
Saturn or Eye.

The details of the core Gled system are described in [1]. The terminology used in the rest of
this paper is also described there (a short vocabulary is given in App. A).

2 Overview

The basic idea of any authentication & authorization scheme is to identify the sender of a request for
certain action and to determine if the sender is authorized to perform it. In Gled the authentication
is performed during connection of a new Saturn (client/proxy) or Eye (viewer). The authorization
is performed during blessing of a MIR by a queen.1 The MIR structure contains the identification

1Flares (broadcasted MIRs) are blessed only on the Saturn that holds target of the MIR in its sun-space. Beams
(directed MIRs) are blessed on the executing Saturn irrespective of the source or target of the MIR.

1

Authentication & Authorization Infrastructure of Gled 2

of the caller and thus the authorization problem becomes: “Is the caller allowed to execute this
particular MIR?”

Direct method calls made during execution of MIRs or threads are not subjected to any kind of
authorization procedure. This is a design decision that allows complex operations to be performed
swiftly. On the other hand, MIRs emitted during execution of a MIR or a thread are considered
to be emitted by the same entity that emitted the MIR or started the thread. This behaviour
is enforced at the level of Saturn (server/proxy/client and MIR router) and Mountain (thread
manager).

There are three base glasses that form the core of Gled’s A&A infrastructure:

1. ZIdentity: lenses of this glass are mostly static and represent identities in the context of a
Gled cluster. Group identities are represented by ZGroupIdentity glass. It contains a list of
basic identities that are actively using this group identity.

2. ZMirEmittingEntity (MEE): sub-glasses of this glass represent Saturns (SaturnInfo) and
Eyes (EyeInfo) connected into the cluster. A MIR emitting entity has a primary identity and
a list of active identities that can change dynamically.

Authentication is the procedure of establishing the link between a MirEmittingEntity and
its primary ZIdentity.

3. ZMirFilter is the base glass for authorization modules. Sub-glasses contain further data
that determines the interrogative procedure for each MIR passing through the filter. The
ZFilterAggregator filter allows stacking of several filters into a list and can be used to set-up
arbitrarily complex authorization conditions.

The most obvious MIR filters are based on identity of the caller (ZIdentityFilter and
ZIdentityListFilter) and provide access list implementation.

Now the basic elements of authorization infrastructure are in place. But nothing has been said
about how they are connected into the object structure and how they are assigned to individual
lenses or their collections.

First it is important to note that all elements (identities, MEEs and filters) are represented
as Gled classes (glasses) and can thus be created and manipulated by using the standard Gled
mechanisms. Hence they can be easily instantiated, replicated and modified in a cluster context.
But what is particularly important: they can be referenced by any lens via either object-aggregation
method of Gled, i.e. they can be linked to and contained in lists.

Each lens can be protected individually by its own MIR filter (named guard). Several lenses
can have the same access restrictions by simply referencing the same filter.

Further, each queen has an additional guard (called protector) that guards all queen’s sub-
jects.2 The authorization procedure performed during blessing of a MIR (in method ZQueen::-

BlessMIR(ZMIR&)) can be configured via other data members of the ZQueen to take either or both of
the guards into account. The details of MIR filtering and blessing are described in Sec. 4.

There is no explicit concept of a user in the presented A&A scheme. In fact it has been split
into two concepts: the connection (ZMirEmittingEntity) and the identity (ZIdentity). This allows
a MEE to simultaneously wield several identities as well as to dynamically change the list of active
identities. The identity can be naturally extended to a group identity which can effectively be
mapped to a list of identities that can request the activation of the group identity in a context of a

2The ZQueen glass is in charge of instantiation and deletion of objects in its object-space called the queen-space.
The queen-space is the smallest chunk of Saturn’s object space that can be mirrored independently.

Authentication & Authorization Infrastructure of Gled 3

Figure 1:

given MEE. The user as a factually existing entity can be reestablished as a link between a MEE
and its primary identity.

Accounting could be implemented by extending the queen class with logging facilities. Further,
some central mechanism should also be provided on the Saturn level as there can be any number
of queens ruling on each Saturn.

3 Authentication procedure

Authentication is performed during handshake process when Gled object representing the connec-
tion is incorporated into the object structure representing the cluster. A successful authentication
results in an established link between a MIR-emitting entity and identity claimed by the connection.

Current implementation of the authentication procedure is based on the RSA public key cryptog-
raphy and uses challenge-response authentication. All further communication ‘trusts’ the accepted
socket and is not encrypted. This requires a repository for the keys and the built-in implementation
uses a UNIX directory structure for storage of the keys. The root of the structure is stored in the top
Gled object: TString Gled::mAuthDir (it defaults to ENV{HOME}/.gled/auth, but can be changed
with the -authdir command-line option). The keys are stored in the public keys and private keys

directories with the individual filename being equal to the name of the identity it is representing.

Authentication & Authorization Infrastructure of Gled 4

This means that if you want to allow user foo.bar@baz.org to login to the cluster, you must obtain
his public key and copy it to the public keys directory. Group membership information is stored in
the groups directory. Each group is represented by a file (again, with the same name as the group)
which is simply a new-line separated list of identities that are allowed to claim this group identity.
By convention the group names begin with the @ character (e.g. @admin or @master@baz.org).

So far no attempt was be made to provide user and group management interfaces. In the current
Gled distribution the management task reduces to simple file-system operations and editing of files.

The authentication procedure proceeds through the following steps:

1. The connecting MEE opens a TCP/IP socket to the server port of the Saturn it is attempting
to connect to (Si). After the initial handshake the MEE issues a MEE connection request
(GledNS::MT MEE Connect) accompanied by a serialized SaturnInfo or EyeInfo structure. The
login identity must be specified by setting the ZMirEmittingEntity::mLogin string variable.
This will become the primary identity of the MME.

2. Si sends a request for initiation of a new MEE connection to the SunAbsolute (S0), again
followed by the streamed MEE. S0 returns either the connection identifier to Si or denies the
connection.

3. Si forwards the connection identifier to the MEE. The MME then establishes a direct connec-
tion to S0 (TCP/IP socket) and requests authentication for the given connection identifier.

4. S0 returns the challenge string, encrypted with the public part of the RSA key belonging to
the MME’s login identity (note the a streamed MME has already been sent to S0 by Si),
followed by the public key of the S0.

5. The MME decrypts the challenge using its private key, re-encrypts it by the public key of the
S0 and sends it back to S0.

6. S0 decrypts the message and compares it with the original challenge. On success the MEE is
added to the cluster and associated with the claimed login identity.

3.1 Acquiring further identities

For now, only group identities can be attached to a MME as additional active identities. The
procedure is simple: a MIR has to be sent to the SunQueen with the aspired identity as the
argument:

ZGroupIdentity* new_identity = <sth>;

auto_ptr<ZMIR> mir(sun_queen->S_AttachIdentity(new_identity));

mSaturn->ShootMIR(mir);

SunQueen performs the relevant checks and emits all necessary MIRs. A MME can only have
a single instance of any group identity in its list of active identities.

To remove a given identity, the converse method ZSunQueen::DetachIDentity(id) must be called
via a MIR.

3.2 External identity servers

Ideally one would wish for an extension of the concept of the identity so that further specializations
could use external databases and/or mechanisms for authentication and for resolving of group
membership queries.

Authentication & Authorization Infrastructure of Gled 5

4 Authorization procedure

Authorization performed for MIRs. The process of blessing: dependency check of context arguments
followed by authorization.

In the context of a MIR authorization, there are two filters that can be used in the authorization:

1. Guard of the lens that will execute the MIR (or a lens at which the method call request is
directed).

class ZGlass { ZMirFilter* mGuard; };

With guards individual lenses can have their own access permissions.

2. Protector of the queen ruling to the target lens (the queen that is performing the MIR
blessing).

class ZQueen { ZMirFilter* mProtector; };

Protectors serve to all lenses of a given queen (including the queen herself) and thus provide
a method of setting access rights for a logical group of lenses.

Queen has further configuration variables that fully specify in what sequence the two filters will
be used to decide the authorization problem. The MIR filtering details are explained in Sec. 7. Any
MIR filter, when presented with a particular MIR, returns its judgment: allow, deny or none. It
is important that a filter can have no particular opinion about the MIR (indicated by the none
return value): this allows for an easy implementation of compound filters. Further, it makes the
MIR filtering procedure symmetric with respect to the final judgment and goal of the individual
filter: it can allow/deny the execution if/unless certain conditions are met.

Consider the authorization related part of the ZQueen glass:

class ZQueen : public ZNameMap {

...

public:

enum AuthMode_e { AM_None=0, AM_Queen, AM_Lens,

AM_QueenThenLens, AM_LensThenQueen };

enum Align_e { A_Good=0, A_Evil };

protected:

UChar_t mAuthMode; // X{GS} 7 PhonyEnum(-vals=>[AM_Null, AM_Queen, ...])

UChar_t mAlignment; // X{GS} 7 PhonyEnum(-vals=>[A_Good, A_Evil])

UChar_t mMapNoneTo; // X{GS} 7 PhonyEnum(-vals=>[R_Allow, R_Deny])

ZMirFilter* mProtector; // X{GS} L{}

public:

virtual void BlessMIR(ZMIR& mir) throw(string);

...

};

Authentication mode (mAuthMode) specifies any selection of the two filters. If both filters are
used, the order in which they will be considered can be selected. Together with queen alignment
this can serve for optimization of the access checking procedure.

Alignment (mAlignment) is relevant for modes that use both filters. Good queens prefer to allow
the MIR execution. If the first filter returns allow they immediately allow the execution. If the
first filter returns deny, they still consider the second filter. And conversely for queens that have
evil alignment and prefer to deny the execution.

Default judgment (mMapNoneTo): if both filters are undecided (or if authentication mode is set
to none) than the MIR is blessed if it is set to allow and discarded if it set to deny. In contrast

Authentication & Authorization Infrastructure of Gled 6

to MIR filters, a queen can not be undecided about the fate of a particular MIR: it can either be
blessed (and will be executed) or it has to be excommunicated.

5 MIR Emitting Entities

MIR emitting entities (MEE) can emit MIRs into a Gled cluster. To emit a MIR, it has to be
made available to a Saturn which then, depending on the type and recipient of the MIR, routes it
towards it recipient and/or executes it.

class ZMirEmittingEntity : public ZGlass {

...

protected:

TString mLogin; // X{GS} 7 TextOut()

ZIdentity* mPrimaryIdentity; // X{GS} L{}

ZHashList* mActiveIdentities; // X{GS} L{}

public:

Bool_t HasIdentity(ZIdentity* ident);

...

};

Each MME has a login user name (mLogin) which is, during the authentication procedure, linked
to the primary identity (mPrimaryIdentity) of the MME. Further identities can be associated with
a MME (see Sec. 3.1) and they are stored in the list pointed to by the link mActiveIdentities.

The HasIdentity(ZIdentity* ident) method can be used to establish the presence of ident as
either the primary or any of the active identities.

5.1 SaturnInfo

Instances of the SaturnInfo glass represent Saturns in a Gled cluster.

class SaturnInfo : public ZMirEmittingEntity {

...

protected:

Bool_t bUseAuth; // X{GS} 7 BoolOut()

SaturnInfo* mMaster; // X{GS} L{}

ZHashList* mMoons; // X{GS} L{}

ZHashList* mEyes; // X{GS} L{}

...

};

Each Saturn is connected with neighbouring Saturns in the node hierarchy: the mMaster link
points to the relative server (it is zero for SunAbsolute) and the list pointed to by the mMoons link
contains clients of the Saturn. These structures are actively used by a Saturn during routing of
MIRs. All connected viewers are stored in the list pointed to by the mEyes link. SaturnInfo also
contains some general information about the computing node it is representing (architecture, CPU
type and frequency, amount of memory etc.).

Sources of MIRs carrying the signature of a given SaturnInfo are:

1. the Saturn itself; these MIRs are mostly directed at the SunQueen of the SunAbsolute and
serve the goal of changing the topology of the Gled cluster (addition/removal of Saturns and
Eyes).

2. the ROOT shell; note that you must create the MIR and pass it to the Saturn either via
posting or shooting.

Authentication & Authorization Infrastructure of Gled 7

5.2 EyeInfo

Lenses of glass EyeInfo represent the viewers or Eyes.

class EyeInfo : public ZMirEmittingEntity {

...

protected:

SaturnInfo* mMaster; // X{GS} L{}

...

};

Note that Eyes have TCP/IP connection to the local Saturn and that they are not allowed to
directly manipulate the available objects. For every user action a MIR is created and sent to the
Saturn. It then sets the caller variable of the MIR to the EyeInfo structure that represents the Eye
in the cluster.

6 Identities

Identities are mostly static lenses (of glass ZIdentity) that serve two purposes:

1. to be attached to MEEs that have proved to be worthy

2. to be referenced by MIR filters to either allow or deny certain action to the possessors of
given identities

The name of the lens (declared in class ZGlass { TString mName; };) is reused for the unique iden-
tification string of the given identity.

class ZIdentity : public ZGlass {

...

protected:

UInt_t mNumMMEs; // X{GS} 7 ValOut()

ZMirFilter* mAllowThis; // X{GS} L{}

...

};

Each identity knows a number of MMEs that are using it (mNumMMEs). A default MIR filter is
created and linked at the identity instantiation time (link mAllowThis; returns allow if the calling
MME has the identity and deny otherwise).

6.1 ZGroupIdentity

The ZGroupIdentity represents a group of users.

class ZGroupIdentity : public ZIdentity {

...

protected:

ZNameMap* mActiveMMEs; // X{GS} L{}

...

};

In addition to the identity the group identity also contains a link to list of MEEs that are
currently using the group as one of theirs active identities.

Authentication & Authorization Infrastructure of Gled 8

7 MIR Filters

7.1 ZMirFilter

ZMirFilter is the base class for all MIR filters. Its functionality is provided by a virtual method
FilterMIR:

class ZMirFilter : public ZGlass {

...

enum Result_e { R_None=0x1, R_Allow=0x2, R_Deny=0x4 };

virtual Result_e FilterMIR(ZMIR& mir);

protected:

UChar_t mMapNoneTo; // X{GS} 7 PhonyEnum(-vals=>[R_None, R_Allow, R_Deny])

...

};

A MIR filter can be undecided about a MIR: in this case it returns ZMirFilter::R None. But
sometimes this is undesirable and R None should be mapped to R Allow or R Deny. That’s the
purpose of the mMapNoneTo data-member. As glasses always use public inheritance from glass bases
the variable is available from all filters and can be used to tailor filter behaviour to its function.

The FilterMIR() method is trivial: it returns the value of mMapNoneTo.

7.2 Identity Filters

Identity filters provide the core functionality of authorization as in most cases it is the identity of
the caller that decides if a MIR is allowed to be executed.

7.2.1 ZIdentityFilter

class ZIdentityFilter : public ZMirFilter {

...

protected:

ZIdentity* mIdentity; // X{GS} L{}

UChar_t mOnMatch; // X{GS} 7 PhonyEnum(-vals=>[R_Allow, R_Deny])

...

};

The ZIdentityFilter checks if the calling MEE (obtained from ZMIR::Caller) is in possesion of
identity mIdentity and returns mOnMatch if it is and the negated result if it is not. If the mIdentity

link is not set it returns whatever R None maps to.
The check if MEE has a given identity is performed by calling Bool t ZMirEmittingEntity::-

HasIdentity(mIdentity). This method returns true if the identity is either the primary identity of
the MEE or it exists in the list of its active identities.

7.2.2 ZIdentityListFilter

class ZIdentityListFilter : public ZMirFilter {

...

protected:

ZHashList* mIdentities; // X{GS} L{}

UChar_t mOnMatch; // X{GS} 7 PhonyEnum(-vals=>[R_Allow, R_Deny])

...

};

Authentication & Authorization Infrastructure of Gled 9

The identity list filter behaves exactly like the identity filter with the only difference that it
checks if MEE is in possesion of any identity in the list mIdentities. The check stops on first match
and mOnMatch is returned.

7.3 ZFilterAggregator

Filter aggregators are the basic building block of complex authorization checks. An aggregator
holds a link to a list of subordinate filters and traverses them in list order.

class ZFilterAggregator : public ZMirFilter {

...

protected:

Bool_t bStrongNone; // X{GS} 7 Bool(-join=>1)

Bool_t bPreemptNone; // X{GS} 7 Bool()

Bool_t bPreemptAllow; // X{GS} 7 Bool(-join=>1)

Bool_t bPreemptDeny; // X{GS} 7 Bool()

ZHashList* mFilters; // X{GS} L{}

...

};

During the traversal the results returned by individual filters are accumulated (the values of
ZMirFilter::Result e constitute a bit field) by bitwise or operation.

The traversal can terminate before the end of the list (preempt) if the result returned by a filter
has the corresponding preemption flag set (members bPreemptXyz). In this case the return value
of the filtering operation is the return value of the filter that caused the preemption. The R None

value is remapped if necessary.
When the list traversal is complete3 the following logic is applied:

1. if both R Allow and R Deny bits are set the remapped value of R None is returned; after that
step only one of the R Allow and R Deny bits can be set in the collected result, and possibly
also the R None bit

2. if R None bit is set and bStrongNone variable is true, then a remapped R None is returned

3. if R Allow or R Deny is set, it is returned

4. a remapped R None is returned

The described algorithm covers all cases when only the bitwise or of all the results matter. One
could also implement a voting scheme, but it somehow misses the gist of a predictable authorization
system.

Filter aggregators can of course be in the filter list and thus arbitrarily complex filters can be
constructed. As filters are glasses, some typical compound filters can be created once and reused
by incorporating them into the object graph on several points.

7.4 ZMethodTagPreFilter

Exported methods (and the implicit set methods) can have any number of method tags (character
strings) assigned to them. The tags are declared in the header file by using the Tags{<tag1>,
<tag2>, ...} syntax, recognized by the Project7 parser and inserted into the glass catalog.4

3Traversal also finishes when both R Allow and R Deny bits are set.
4In principle method tags can also be edited on run-time, but there is no centrally provided mechanism for such

operations.

Authentication & Authorization Infrastructure of Gled 10

The idea of the method tag pre-filter is that it only applies a filter if the method being posted
for execution has one of specified tags.

class ZMethodTagPreFilter : public ZMirFilter {

...

protected:

TString mTags; // X{GS} 7 Textor(-width=>20)

ZMirFilter* mFilter; // X{GS} L{}

...

};

The mTags member holds a comma-separated list of tags for which the mFilter will be applied.
If a tag is found and the filter is set, the result of the filter is returned. If the filter is not set, a
remapped R None is returned. If the tag is not found, the remapping is not done and R None is
returned.

By using the method tag pre-filter, one can selectively allow or disallow access to a specific part
of the interface of a given object.

8 The Default Security Settings

At the Sun start-up all user and group identities available from the Gled::AuthDir are scanned and
corresponding identity objects created as children of the SunQueen.5 SunQueen (as do all queens)
offer a directory structure and Authentication and authorization related lenses are stored in the
directory Auth. It contains the following standard directories:

1. Identities: all identities found in Gled::AuthDir/public keys

2. Groups all groups found in Gled::AuthDir/groups

3. Filters standard filters, used to protect the ruling class and representatives of MMEs.

Gled requires some standard identities for proper management of the cluster:

• sun.absolute: corresponds to root

• saturn: can accept Saturns and Eyes

• mercury: can not accept further MMEs; pure worker node

• venus: can only accept Eyes

• neptune: can only accept Saturns; proxy and/or worker.

These identities can be used by cluster administrators to limit functionality of a given node to one
of the described functions.

The login identity of a guest maps to venus if the connecting MEE is a Saturn and to a specially
created guest identity if it is an Eye.

References

[1] M. Tadel, Gled – an Implementation of the Hierarchic Server-Client Model, Parallel and Dis-
tributed Scientific and Engineering Computing: Practice and Experience (editors: Y. Pan and
L.T. Yang), Nova Science Publishers, 2003.

A continually updated version of the document is available from http://www.gled.org/docs/.
5Other Saturns receive this information as part of the Saturn connection protocol.

Authentication & Authorization Infrastructure of Gled 11

A The Gled terminology

glass: a fully Gled enabled class (sub-class of ZGlass class). Instances of glasses are called
lenses. They are elements of Gled’s object graphs and have the following basic properties:

• can be (de)serialised in a context of an obect graph (Streamer() method auto-generated by
rootcint)

• have methods to generate and execute MIRs (generated by Project7)

• have auto-generated low-level GUI elements that allow editing of lenses in a contect of a Gled
viewer called Eye (generated by Project7).

